top of page

The Proof is in the Panic: We Need a New Strategy against Viral Infections


Summary: The recent international health crises due to viral infections has made one thing very clear: We need a new strategy to combat viral infections. Ebola has been in the international news daily for the past two months, while the US has had a recent upsurge of measles, enterovirus D68, and a new polio-like paralytic disease thought to be due to a viral infection. The fact that these viral-infection health crises exist in these modern times is prima facie evidence of the failure of current systems and the need—not for new treatments within the same model — for a new model better suited for international distribution, disease prevention, and broad-spectrum effectiveness. The multifaceted model presented here gives us four areas upon which we can focus our efforts: 1) targeting the virus directly, 2) blocking viral replication, 3) supporting immune function, and 4) supporting cellular and whole-body health. These are illustrated in the accompanying diagram and briefly described and exemplified in the four respective paragraphs that follow. These interventions have proven effectiveness, low cost, and international availability without the costs and adverse effects of current medical treatments.

History and Perspectives What we as doctors learn in medical school about viral infections is summarized within the following course titles: Microbiology, Pathology, and Pharmacology. Following this instruction, the treatments that we use are sanitation, vaccination, and antiviral drugs, respectively. Based on training and my experience with other doctors, I suggest here that most medically-trained doctors are — at least per their formal training — unable to see beyond these blinders and limited options. What I would like to do in this article is broaden those conceptual and therapeutic horizons via a structured antiviral strategy that includes the previously mentioned sanitation, vaccination and antiviral drugs but extends beyond these limited options. Additional citations, support, and clinical details (e.g., dosing and contraindications) for this strategy are available in a digital format constantly updated[1]; the purpose of this article is to structure the strategy, to shift the paradigm.

The fact that most doctors learn nothing about the science of Nutrition in medical school is well known publicly and within medical school academics.[2] Typically, most medical students read one chapter about pathologies caused by extreme nutritional deficiencies, but they learn essentially nothing about therapeutic nutrition and how it can be applied in the prevention and treatment of disease. Does ignoring Nutrition force doctors by default to over-rely on drugs and surgery? Would not public health be better served if information were distributed on the nutritional prevention of viral infections, so that patients and doctors alike would have more options?

What I have noticed through the various doctorate programs I have attended is that clinical training in the management of viral infections remains mostly phenomenalistic and enigmatic, rather than deciphered and structured. As an educator, researcher and writer, I have learned through experience to structure information in such a way that the accessibility and retention of the information is enhanced by students/readers (e.g. the DIRT, MYBESTPLAIDFIG for nutritional immunomodulation[3], and FINDSEX® acronyms[4]). My main purpose in writing this essay is to demonstrate a unique and structured antiviral strategy and to provide representative examples of its practical application.

Rather than viewing viral infections in a manner that is phenomenalistic and enigmatic, and therefore unwieldy, leading to clumsy prevention and treatment strategies, we should deconstruct the complexity of the infectious process. Doing so – at least in the manner that I have described – gives us four areas upon which we can focus our efforts: 1) targeting the virus directly, 2) blocking viral replication, 3) supporting immune function, and 4) supporting cellular and whole-body health. These are illustrated in the accompanying diagram and briefly described and exemplified in the four respective paragraphs that follow.

bottom of page